Current governance of science, technology and innovation (STI) faces tough challenges to meet demands arising from complex issues such as societal challenges [1,2,3] or the United Nations’ Sustainable Development GoalsFootnote 1. When tackling complex problems, expertise in research integration and implementation is particularly important, yet currently exists in rather fragmented approaches such as inter- and transdisciplinary research, systems thinking or action research [4]. Here, transdisciplinary research generally refers to the integration of three types of knowledge: systems knowledge, target knowledge and transformation knowledge [5]. Providing these types of knowledge has long been reserved for a small and privileged group of actors.
As a result, and under the header of responsible research and innovation (RRI), there have been calls in the European Union and beyond for research and innovation (R&I) to orient itself more strongly towards societal needs, demands, and preferences. Building upon the ongoing development of democratic science and technology governance, for several decades, there has been a demand for reflexive and responsive institutions facilitating more constructive science-society interactions [6]. RRI emerged from preceding and ongoing developments in technology assessment, anticipatory governance or upstream engagement (Owen, [7]). Participatory technology assessment (pTA) specifically aimed at strengthening inclusive deliberation on emerging technologies and STI agendas [8, 9], whilst foresight, and here especially horizon scanning activities with participatory elements, focussed early on the potential of stakeholder engagement for on identifying new topics for STI governance [10,11,12,13]. Even though RRI is shifting its concept, its main dimensions inclusion, anticipation, responsiveness and reflexivity are established, with the addition of two emerging dimensions, i.e. sustainability and care [14]. Combining these dimensions can become “a transformative ingredient of ‘responsibilisation’ of actors and institutions in R&I systems” [15]. Whilst RRI’s shift from academic discussion to institutional practice is well underway, a good part of these practices focusses on opening up research and innovation [16]. This shift has “inevitable institutional consequences for research funding, priority-setting and new collaborative models between science, policy, society and industry” [17]. Here, the question of whom to engage in such settings has evolved considerably over the years, whilst the triple helix has long been the main model for a reflexive innovation system, involving academia, industry and governments [18]. Within the last decade, however, the quadruple helix, adding the public as an additional factor, has gained importance [19, 20] and is being further refined by accepting the established socio-ecological necessities of the twenty-first century by adding natural environments as major driver for knowledge production and innovation [21].
From science communication to participatory science governance
Modern science’s relationship with the public during the past century up until the present can roughly be divided into three distinct paradigmatic phases: science literacy (1960s onwards), public understanding (after 1985) and science and society (1990s to present) [22]. The first two paradigms were characterised by attributing knowledge and attitude deficiencies to the public, rendering it incapable of understanding science, with the result of limited appreciation for and raising fears of science (and technology). Science literacy measures, attitude change and image marketing are the reported viable tools to meet such challenges. This “deficit model” has been much critiqued and resulted in the third paradigm of a rather equal science and society relation. Criticism towards the deficit model followed several lines of arguments, for instance that it fails to recognise the importance of local knowledge-in-context [23], or the flawed general assumption that because citizens show mistrust in science, they are deficient and therefore not to be trusted when asked about issues related to science and technology.
Lash et al. [24] describe how technology creates new forms of risk, whilst scientists are repeatedly drawn to mitigating problems created by science and technology, with Jasanoff [25] arguing that industrial society’s capacity for prediction and control was outrun by its ability to create vast technological systems. As science is increasingly embedded in society, respective accountability and quality control, too, need to be shared with society [26]. Against this background, the “participatory turn” took place in science, and the governance of science and technology underwent reforms towards more and discursive engagement activities [25].
Sturgis and Allum [27] summarise that, on the one hand, perception of risk towards new technologies is strongly influenced by norms and values which do not primarily depend on peoples’ scientific understanding. On the other hand, scientific knowledge does have an additional independent effect. Consequently, the first two paradigms of science literacy and public understanding of science are not superseded by the dialogical form of science and society relation, but continue to simultaneously inform research and policy [22]. This resulted in criticism, for instance regarding conflict between integrity/impartiality of science and its “involvement with the vested interests of the State and commerce on policy issues”, threatening to destroy public trust in science [28], or regarding the alloted diminishing of democratically credible and sometimes effective “street-protest” in response to uneffective laboratory-like partcipation experiments [29, 30]. Stilgoe et al. [31], however, describe a ‘gradual and incomplete shift from understanding to engagement’, or, in short, from deficit to dialogue. Comparing the last four European science policy framework programmes with regard to the science-society relationship, Conceição et al. [32] also find a shift towards strengthening issues of governance of science and the transformation of scientific institutions when compared with to science education and public communication of science.
In general, there are three main arguments that are presented the most when examining why public participation is necessary for political decision-making [33]. (a) Democracy: counteracting a crisis of representative democracy by alleviating the general lack of transparency of political processes by involving the public more directly, ensuring a consideration of different opinions; (b) function: improving effectiveness of decisions on controversial issues when disagreement exists within scientific communities on a magnitude of problems and their solutions whilst public trust in experts simultaneously declines; (c) normativity: the moral obligation of involving a wider public in decisions on matters of public interest. Here, another addition may be the issue of capacity building, an often underrated effect of public engagement (PE) activities [34].
As institutions shifted towards public engagement and more activities were requested and commissioned, a participation industry came to life [35], keeping public participation alive until today, in some countries more than in others. Chilvers and Kearnes [36] classify this reconfiguration of the science and democracy relationship as “what appear on face value to be novel and emergent participatory experiments are thus part of the cyclical and continual readjustments in the democratic order of things”. Curato et al. [37] review the most discussed issues in deliberative democracy within the political and social sciences, and demonstrate, amongst others, that deliberation: (a) is a realistic endeavour (responding to criticism of being utopian), being implemented within and outside governmental institutions; (b) is essential to any democratic process; (c) is more than discussion and involves multiple sorts of communication; (d) can curtail elitist domination of policy; (e) does not primarily aim at consensus; however, (f) mitigates group polarisation and thus applies to deeply divided societies.
Methods and methodologies continue to evolve, not only driven by countless activities and actors on several levels, from local to global, but also topic-wise from single technologies to engaging with questions of macro-level governance. Attempting to grapple with this diversification, Rowe and Frewer [38] categorise public engagement activities by differentiating between public communication, public consultation, and public participation according to characteristics of information flow in the respective settings. To clarify the strength of engagement, Manafò et al. [39] define six levels arranged on a spectrum with increasingly required resources (time, knowledge, funds): learn/inform, participate, consult, involve, collaborate and lead/support. Gastil [40] highlights the need for analysing public deliberation methods, particularly in relation to the different points of entry within the policymaking system. Participatory science governance is a broadening field and it has been criticised mainly for failing to reach the intended impact, in both formal settings [41] and informal ones [42]. Abels and Bora [8] for instance conclude that regarding the “high potentials of conflict in ethical debates […] participatory TA is an unpredictable tool with limited possibilities”. Whilst there are several reasons for failing to reach the intended impact, more and more scholars point towards public engagement activities to be inserted within the research and innovation system as early as possible (upstream engagement), as lateness of respective activities has been identified as an important reason for the failure [30, 43,44,45,46].
Conveying the argument of favouring public engagement in agenda-setting, participation (a) helps to democratise the research arena dominated by an elite, making research funding decisions more transparent; (b) contributes to better understand societal impact of and a need towards science and technology, thus producing better decisions whilst increasing public trust in science; and (c) fulfils the moral obligation of involving the public into guiding decisions of distributing tax-money for research and innovation which may concern public and individual lives.
Research priority setting to research agenda setting
The terms “research priority setting” and “research agenda setting” are often used interchangeably [47]. Since health research has been, until today, the most prominent scientific field that applies participatory agenda setting, taking a closer look at the abovementioned arguments is essential. Referring to the three arguments described above, Schölvinck et al. [48] provide the following review: Involving patients at an early stage of research policy increases the chances of successful implementation of innovations, which increases quality and legitimacy of research policies (the democracy argument); patients require valuable experiential knowledge when dealing with their condition and its consequences that complements scientific and biomedical knowledge (the functional (substantial) argument); they have the moral right to engage in decision-making on research policy since they are affected by it (the normative argument).
After the value of experiential knowledge gained wider recognition around the turn of the millennium, for instance patient participation for health research, research priority setting became one focus within growing field of engagement activities for governing health systems, and included, amongst others, the setting and monitoring of ethical standards. Health research priority setting is arguably required by the judiciary when state interests are at stake, for example in the promotion of health equity [49].
Research funding organisations started to engage with the public to identify and prioritise research topics for investment and to decide between proposals [50]. Evaluations, for instance of the criteria used to take such decisions, show mixed results as well as possible bias regarding who presented the proposal [51]. Nevertheless, Smith [52] presents evidence indicating that “voting decisions were most influenced by potential benefits of the planned research to society”.
Today, health research priority setting represents a maturing field, with patients mainly being involved “most often at the pre-preparation stage to identify ‘high-level’ priorities in health ecosystem priority setting, and at the preparation phase for health research” [39]. Here, specific focus is given to what knowledge and questions patients and the public value most when becoming experts for their own health care experiences [39]Footnote 2. This involvement can “redress power imbalances in health research agenda setting” [53].
However, except for those four cases1 where public engagement in priority setting takes place, it is rather informal and ad hoc, and not routinely used by research funding organisations because it threatens established research structures, procedures, and scientists’ cultures and priorities [54, 55]. Such structures and an uneven distribution of power and resources lead to “undone science”, a term referring to “areas of research that are left unfunded, incomplete, or generally ignored but that social movements or civil society organisations often identify as worthy of more research” [56].
Nonetheless, when such priority setting takes place, important framing decisions have already been taken. Participatory agenda setting inserts public opinion further upstream, at an earlier stage than priority setting. Here, a very early point of engagement can be found within the constituting phase of research agendas as topics, general lines of enquiry, and targets are shaped in this phase. These are the boundaries in between which researchers later navigate when proposing their intended research.
However, the inclusion of experts, stakeholders and even laypeople into agenda setting maybe acceptable to more applied fields of research, where benefits of such activities are more obvious. For instance, researchers may be more inclined to “listen” to outsiders in terms of agenda setting, when the issues at stake directly concern those outsiders, for instance when studying futures, medical treatments, or political issues. Actors within more basic research-oriented fields, e.g. in the natural sciences, may struggle more to see such benefits [57], especially when public engagement requires comprehensive information about the field prior to the involvement, e.g. in nanotechnologies [58]. Additionally, public interest in such basic research may be limited. Some fields actively foster PE activities, for instance space research [59]. PE in the natural sciences often comes in form of citizen science, which primarily focusses on science communication or the involvement in data collection [60, 61]. Whilst citizen science rather seldomly influences basic research agendas, it contributes to policy agenda setting, e.g. in environmental policy [62].
Agenda setting is a specific way of shaping futures by guiding the allocation of significant funds towards the chosen targets or fields of priority. Orienting research and innovation is a complex task in itself, and respective agenda setting processes have traditionally been expert-driven because scientific knowledge has long been considered the only appropriate form of knowledge for, e.g. framing research agendas. Expert- and stakeholder-based anticipation of future developments, identification of possible challenges and solutions to frame respective strategic decisions has been embedded into research programming [11, 63, 64]; nevertheless, it presents a limited approach to shaping futures as this may neglect societal needs and values and therefore valid alternative futures.
Such a goal is shared by the open science initiative which has been unfolding for the past decade, aiming at increasing science’s responsiveness to public needs amongst other things [65]. The integration of organised stakeholders’ interests has, of course, a long tradition (e.g. in form of lobbyism) as agenda setting is in most cases partly, or mainly, a political process. This elitist form of visioning renders large parts of the population “not having futures” [66]. As a result, advice-giving processes opened up to public participation, becoming a norm in, for instance, foresight [67]. Technology assessment over the last decades [8, 9, 68]. As TA is inherently democratic, it has actively promoted public engagement in science and technology, relying not only on functional arguments of inclusion in modern democracy, but also on a normative one such as the empowerment of citizens and stakeholders, and its value in itself [69]. Participatory agenda setting is therefore, as deliberative democracy is in general, a normative project.
In summary, research agendas are increasingly becoming the target of multi-actor engagement processes aiming at integrating a broader base of information by considering other forms of knowledge [70]. Research programme development acts as an early entry point for public needs and values into the innovation process [71, 72]. Experience with participatory agenda setting processes suggests that “laypeople’s experiential and value-based knowledge is highly relevant for complementing expertise to inform socially robust decision-making in science and technology” [43]. Recent empirical evidence from comparing citizen-driven STI agenda setting with expert-based foresight studies strengthens this claim [73, 74]. Aiming at producing sustainable strategies for responsible socio-technical change, research funding can benefit from combining forward-looking and public participation to elicit socially robust knowledge by consulting with multi-actors, including citizens [75]. However, the inclusion of laypeople into futures studies and foresight in general, and into forward-looking STI governance in particular, is underexplored.