World energy demand is increasing continuously, and it is expected to grow multiple times by 2040 [1]. It is because the expectation for everyday comforts and the number of inhabitants in developing nations is increasing. The need to come up with sources of green energy for sustainable development has emerged to provide the society with comfort, shelter, and future security [2]. The question arises: Will the clean energy transformation be fast enough to fulfill the world energy demand for the coming decades in time?
There are fields like communication technology and biomedical research where transformation is happening at much higher pace, and due to highly competitive markets, customers are benefited with quality products at a reduced cost [3]. Can we expect the same transformation rate in energy sectors market? Even though governments worldwide are making policies and motivating clean energy transformation, it is not enough to achieve the goal [4, 5]. There are many reasons behind the moderate energy transformation. One of the essential issues is, there is no competition among energy sector markets or competition with low-profit margin, so they are not bothered adopting new technology. There are structural features in the real energy system that slows down or even prevents technology change, so there are chances that energy transform may not happen at the pace as required [6]. The future energy system based on clean energy technology is shown in Fig. 1. For the stationary usage, modernizing the grid with renewable resources is the primary goal. Also, energy use in transport sector must employ alternatives to hydrocarbon fuels, which requires low-cost electric vehicles with high efficiency. To modernize the power grid with clean energy technology, the behavioral impact from customers is extremely important and interdisciplinary studies that are collaborative, open, and global are critically needed. Energy transform discussion has a variety of issues which can only be addressed utilizing social science and behavioral research. Here we will have to understand that energy sector market is non-competitive. Thus, they are not responding to technology development or in many cases they are reluctant to transformation [3, 4]. Consumers are not concerned with the source of energy if they will have to pay the same electricity bill. The idea of long-term benefit is still alien to customers in the energy sector as they are only concerned with the cost and reliability [7]. Therefore, in the area of energy production and use, there is a requirement of social science expertise. It is required to understand better the role of public attitude, economic trends, and government regulations in the development and adoption of clean energy [3,4,5].
In the stationary energy system, sources providing baseload capacity (continuous power supply) are given higher priority for energy transformation over intermittent power sources [1]. Unfortunately, most of the renewable energy sources being utilized for power supply are experiencing irregular power production, and they require additional storage units [8]. Recently, most of the industry and institutional work is focused on the adoption of terrestrial solar energy. The research is concentrated on the potential effects of distributed power generation or grid integration for both solar photovoltaic and solar thermal power stations [8]. However, there are challenges in adoption of terrestrial solar energy. For example, solar photovoltaic and solar thermal can supply power only in the daytime, and solar irradiance fades on cloudy and stormy days. The other negative point with solar panels or solar thermal energy is that it needs regular care and maintenance. In solar photovoltaics, it is a key issue because pollution and dirt can degrade photovoltaic efficiency or electrical power production.
On the other hand, among the accessible renewable energy resources, space-based solar energy is most promising as it can provide 24-h energy demand [8]. Therefore, it is a suitable energy source that can promote sustainable development of humankind. It is a proper aspirant which assures a practical and carbon dioxide-free energy, convenient for continuous power supply or baseload supply. There are several advantages which have propelled investigation into satellite solar power station (SSPS) to modernize the grid. In SSPS, there is no hindrance to the solar flux by the surrounding environment of the earth as shown in Fig. 2. A SSPS constitutes a technique for collecting space solar power utilizing satellites and transporting it to the ground wirelessly by utilization of microwaves [9, 10]. In many aspects, SSPS has advantages over terrestrial solar power due to unobstructed and undistorted solar irradiance available in space [9]. Furthermore, the SSPS has a three-fold increase in power accessibility over the terrestrial solar power system [9].
From 1970, US space agency NASA (National Aeronautics and Space Administration) in collaboration with DOE (Department of Energy) has been working on SSPS for power generation on earth [11]. The combined effort came up with the proposed model of SSPS 5-GW baseload power capacity at 2.45 GHz working frequency [12]. Unfortunately, due to the high costs and a lack of funding, the research has been suspended in 1980. After that, space agencies around the globe are trying to reduce estimated initial cost for SSPS. A Sun Tower model has been proposed with many improvements [12]. The integrated symmetric concentrator has been proposed later with high solar collection efficiency. Several agencies also proposed a model with efficient heat dissipation. Japan’s space agency JAXA (Japan Aerospace Exploration Agency) is developing a SSPS prototype model for pilot demonstration at 5.8-GHz working frequency [1].
This work proposes a 10-GW SSPS model for baseload power generation. The model is based on SSPS in the geosynchronous orbit (36.000 km). A large size antenna on earth is required for collecting microwave power. The ground antenna integrated rectifiers will convert the microwave power into electrical energy. For 10-GW baseload power from space, a single SSPS unit is not practically feasible. An optimized size of smaller power capacity units is required, that will collectively supply 10 GW power. Here the transmitting antenna size (space part) depends on the unit’s power capacity, so an optimized selection is necessary. For calculating the size of the transmission antenna, a case study analysis is performed to demonstrate 10 GW SSPS models. In this work, four cases with different unit power capacity have been considered that will provide 10 GW baseload power (each case). For transportation, in the first stage, the satellites will be installed in low earth orbit (900 km) using reusable launch vehicle. Furthermore, it will be transferred to the geosynchronous orbit utilizing Orbital Dispatch Vehicle.