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Abstract 

Artificial intelligence (AI) demonstrates various opportunities and risks. Our study explores the trade-off of AI 
technology, including existential risks. We develop a theory and a Bayesian simulation model in order to explore 
what is at stake. The study reveals four tangible outcomes: (i) regulating existential risks has a boundary solution 
of either prohibiting the technology or allowing a laissez-faire regulation. (ii) the degree of ‘normal’ risks follows 
a trade-off and is dependent on AI-intensity. (iii) we estimate the probability of ‘normal’ risks to be between 0.002% 
to 0.006% over a century. (iv) regulating AI requires a balanced and international approach due to the dynamic risks 
and its global nature.
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Introduction
Recent progress in artificial intelligence (AI) has lunched 
a debate about a technological singularity [26]. The pub-
lication of AlphaGo Zero in 2017 and subsequently the 
release of large language models reveal potential benefits 
as well as fears [35, 37]. Scientists and notable people in 
power have signed the following statement  [11]: “Miti-
gating the risk of extinction from AI should be a global 
priority alongside other societal-scale risks such as pan-
demics and nuclear war”.

Governments are discussing the need of a regula-
tory approach in order to avoid an AI–dystopia (Lon-
don ai conference, 2023). The European Union has even 
approved an Artificial Intelligence Act on 2 February 
2024  [15]. Yet, how likely is a collapse of civilization or 
extinction of humanity due to AI in a century? What is 
the regulatory trade-off? What are the magnitude and 
determinants of AI risks?

In general, the overall debate encompasses two oppos-
ing views. One group argues that a technological sin-
gularity exists, presenting mainly risks rather than 
opportunities  [9, 12]. Hence, there is need for an AI 
embargo. Others suggest a moderate regulatory approach 
because the benefits outweigh the risks [26]. From the lit-
erature we know that catastrophic events “are not amena-
ble to experimental verification — at least not more than 
once” ([32], p. 298). Existential risks and human extinc-
tion are not only difficult to quantify or falsify, but they 
are also intertwined with complex dynamics across tech-
nological, economic, social, and environmental systems. 
Any existential risk (x-risk) depends on the ‘anthropic 
shadow’  [13]. Naturally, modelling catastrophic events 
require heavy-tail distributions accounting for a substan-
tial degree of uncertainty [49].

In this paper, we study the regulatory trade-off in an 
interdisciplinary framework, modelling the risks and 
benefits. Our approach develops a scientific perspective 
to manage future risks of AI applications. We argue for a 
balanced awareness and a humbled policy approach. We 
construct a theory and explore it in a simulation model 
by applying the Value of a Statistical Life (VSL) theory 
in order to assess the economic costs associated with 
AI-induced risks, focusing on non-existential risks and 
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human extinction. Utilizing a Bayesian methodology, we 
project total factor productivity (TFP) and refine esti-
mates of the probability of catastrophic events and their 
corresponding economic impact.

Our findings indicate that x-risks, defined as high risk 
applications, do not follow a trade-off rather a bound-
ary solution. Prohibition of those applications is reason-
able given the difficulty of quantification. Yet, we equally 
find that the present risks of AI technology are manage-
able, depending on various scenarios. Similarly to Nord-
haus [26] we do not find a singularity, defined as a rapid 
growth in AI, leading to an ever-increasing and infinite 
pace of improvement cascades and subsequently risks. 
The future probability of AI-induced ‘normal’ risks range 
from 0.002% to 0.006%. The potential global costs could 
range from $1.44 trillion to $4.32 trillion by the end of 
the century. These results highlight the need for a bal-
anced approach, emphasizing the prohibition of high-
risk AI applications, while acknowledging the potential 
benefits of middle to low risk applications. Our research 
spurs the regulatory debate to a scientific-based direction 
about the merits and costs of future AI dynamics.

The paper is organized as follows:  In the next section 
we  present a literature review. In the subsequent  sec-
tion, we build an analytical model and combine it with 
a Bayesian time series approach in order to simulate risk 
probabilities. The discussion  section embeds the inter-
pretation of the model results. Finally, we provide con-
cluding remarks.

Literature review
Modelling technological risks is an interdisciplinary 
endeavor. Although there is a lack of an exact definition, 
we use a broad terminology of the term existential risks, 
including human extinction or a major catastrophe [45]. 
Note, existential risks cannot be studied in a vacuum. 
Catastrophes evolve in combination to other domains or 
in chain reactions  [2, 19, 43]. The methodological chal-
lenges in quantifying the likelihood of existential hazards 
are studied by Beard et al. [5] and Garibay et al. [16].

The philosophical arguments of a technological dys-
topia is as old as philosophy. Already Plato (370  BC) 
claimed that the development of writing degenerates 
human thinking in future. Contemporary philosophers 
argue that the probability of humans extinction is immi-
nent due to the probability that we are living in a com-
puter simulation of the world  [7, 8]. Those testimonies 
seem rather science fiction than science, yet even a sci-
entifically well founded Bayesian approach requires a 
prior probability that is updated with evidence in order to 
obtain the posterior.

In the context of x-risks, there is sparse evidence about 
technological related events and the prior probability are 

disproportionately relevant for a prediction. Although 
Rees [29] claims x-risks are growing due to quick techno-
logical developments, there exist no empirical evidence 
about human extinction due to technological progress 
over the past 250 years of industrial revolution; rather the 
opposite.1

A group of researches argue that humans overstate 
x-risks of new technological developments  [44]. In eco-
nomics there is a historical record of those examples. 
Distinguished scientists such as Thomas Robert Mal-
thus, John Maynard Keynes, Marvin Minsky or Wassily 
Leontief have extremely overestimated the risks of future 
technological developments. Overconfidence and overes-
timation are inherent notions in psychology and behavio-
ral economics [6, 10, 14, 21].

A few studies are estimating the probability of existen-
tial risks  [3, 18, 36]. Those studies apply the frequency 
statistics methodology, which may underestimate the 
level of sparse events and uncertainty, such as a rare 
catastrophe. Most studies about existential risks are 
in the field of global pandemic’s. Heuristically, we see a 
global pandemic each century, such as the Spanish flu in 
1918 and the SARS-CoV2 pandemic in 2020. At the same 
time, we have not seen similar catastrophes caused by 
technology since the industrial revolution in 1750. Woo 
[50] argues that we need to incorporate a counterfactual 
analysis of near-miss events in order to obtain better pre-
dictions about rare catastrophes [28, 51].

There are studies addressing the probability of exis-
tential risks of AI  [4, 17, 23, 25]. Those papers mainly 
focus on the aggregation of expert opinions. An objec-
tion of those estimates are behavioral biases. The study 
by Grace et  al. [17] applies a more rigorous scientific 
approach. Yet, all studies use a kind of median estimate, 
which might be inadequate for existential risk modelling 
according to Turchin [46]. Indeed, estimating x-risks of 
a future ‘artificial general intelligence’ (AGI) which does 
not exist in 2024, should concentrate on tail-risks — that 
is a low probability event with utmost consequences [22]. 
Therefore, one can argue that x-risks should be defined 
by a minimum acceptable level rather than a median risk 
exposure.

Subjective estimates based on weak priors suffer from 
biases, such as overconfidence  [6, 14, 21]. This insight 
is not new. Already Yudkowsky [53] discussed the rele-
vance of cognitive biases, such as hindsight bias, heuris-
tic bias, conjunction fallacy, overconfidence and omitted 
variable bias in judgements of global catastrophic risk 
assessments. In addition, there is a large difference when 

1  We observe a growing population and scarcity of human labor in the 21st 
century.
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asking for the probability of superhuman intelligence 
being developed within a century or when asking for the 
probability of human extinction within a century. The 
responses from those questions can differ substantially 
from group to group [23, 34, 36].

There is evidence that predicting the short-term mer-
its or challenges of future technology is more successful 
than the long-term future developments  [41, 42]. Fur-
thermore, the aggregation of expert opinion can diverge 
from consensus to extreme views. There is evidence that 
disciplinary views or certain political clusters concentrate 
its estimates around opposing positions, particularly in a 
polarized society [31, 38, 39].

Our model framework is close to Nordhaus [26], yet 
sets itself apart in the following ways: Firstly, we define 
a novel and tractable optimal control problem. Secondly, 
we analyze the trade-off in theory. Thirdly, we explore a 
simulation model with a Bayesian methodology. Lastly, 
we uncover insights regarding the regulatory design of 
existential and non-existential risks.

A model
AI technology either augment or replace human tasks [1]. 
By definition this is leading to an acceleration of eco-
nomic growth, g. The advancement towards an AGI, 
however, might pose x-risks to humanity in the long-
run [49]. Hence, we have to study the regulatory trade-off 
of AI’s benefits and costs to humanity.

Let S(t) denote the production function of economic 
stability S(t) = s0e

g(L(t))t , where AI technology is eco-
nomically subsumed to augment innovation and welfare 
over time. The function L(t) = l0e

ξ t represents the expo-
nential rise in AI intensity over time, t. The parameter 
ξ denotes the growth rate of future AI technology. Fur-
thermore, we assume that the economic growth rate is 
linearly dependent on AI intensity: g(L(t)) = ḡL(t) . We 
define the relationship between both functions in form of 
an ordinary first-order differential equation:

Intuitively, an intensifying usage of AI technology, L(t), 
replaces tasks and decrease the growth rate of economic 
stability dS(t)/dt because it exposes the economy to 
future catastrophes.

We define a function U(L) that denotes a relation-
ship between AI intensity and economic utility. This 
function has the derivatives of dU(L)/dL > 0 and 
d2U(L)/dL2 < 0 . Moreover, AI applications create 

(1)
dS(t)

dt
= −L(t).

disutility in regard to growing risks, denoted by the func-
tion P(L).2

We describe the risks by defining a probability of sur-
vival P−1(L(t)) = δe−δL(t) considering the accumulation 
of risks with a right-skewed density function  [47]. The 
social welfare of the society depends on both the poten-
tials of AI, U(L(t)), and the risks posed by AI, P(L(t)). The 
welfare function is defined by

where we assume dW /dU > 0 , dW /dP < 0 , d2W /dU2 < 0 , 
d2W /dP2 < 0 and d2W /dUdP = 0 . This specification 
postulates that marginal utility of stability has a positive 
but diminishing contribution to welfare. In contrast, the 
marginal utility of risks are negative over time.

Since both functions depend on L(t), we treat this 
parameter as the control variable in our optimization 
problem. The degree of stability, S(t), in Eq.  (1) is the 
state variable. Note, in our simulation model, we focus on 
the probability in the end. We do not focus on the order 
of magnitude of a catastrophe  [13]. In our simulation 
approach, we include the magnitude by utilizing the con-
cept of value of a statistical life (VSL).

Optimal control problem
Suppose a public authority is regulating the future of AI. 
Let us compute the optimal degree of AI intensity, L(t), 
over a time horizon [0, T]. The optimal control problem is

The so-called Ramsey approach avoids a discount fac-
tor in the integrand. The regulatory authority has discre-
tion of selecting a certain level of stability, S(T), subject to 
a reasonable restriction that it is nonnegative. The Hamil-
tonian of this problem is

Maximizing H with respect to the control variable L(t) 
by setting its first derivative equal to zero yields

where WU = dW /dU  and WP = dW /dP . To make sure 
that we obtain a maximum, we check the second deriva-
tive (Appendix A). To elicit more information about L(t) 
from Eq. (5), we look into the time path of � . The maxi-
mum principle tells us the law of motion for � . We obtain

(2)W = W (U(L(t)),P(L(t))),

(3)

max
L(t)

T

0
W (U(L(t)),P(L(t)))dt

s.t.
dS(t)

dt
= −L(t)

and S(0) = s0 S(T ) ≥ 0 (s0,T given)

(4)H = W (U(L(t)),P(L(t)))− �(t)L(t).

(5)
∂H

∂L(t)
= WU

dU(L)

dL
+WP

dP(L)

dL
− �(t) = 0

2 
dP(L)/dL > 0 and d2P(L)/dL2 > 0.
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This condition implies �(t) = c . Defining the con-
stant c, we use the transversality condition. With a 
truncated terminal line the condition takes the form 
�(T ) ≥ 0 and S(T ) ≥ 0 as well as �(T )S(T ) = 0 . It is 
evident that �(T ) = 0 . Additionally, due to Eq.  (6) for 
�(t) , we obtain that it is zero for all t. With �(t) = 0 , 
Eq. (5) reduces to

which can be solved for an optimal path in L∗ . If the 
equation is independent of time t, the solution is con-
stant over time: L∗(t) = L∗ , where L∗ denotes the optimal 
acceptable degree of AI intensity. Whether this solu-
tion is acceptable from the standpoint of the benefits 
S(T ) ≥ 0 remains a matter to be settled. Prior to con-
tinuing, it is useful to examine the economic meaning of 
Eq. (7) in general.

The first term, WU (dU(L)/dL) , measures the mar-
ginal effect of a change in AI intensity on the societal 
welfare. It represents the marginal utility of AI usage 
through its contribution to economic stability. The 
second term, WP(dP(L)/dL) , expresses the marginal 
disutility derived from AI risks. Therefore, Eq.  (7) 
determines the optimal trade-off of a regulatory prob-
lem. Specifically, this equation represents the trade-off 
between the merits and costs of AI regulation.

Theorem 1  The regulatory trade-off is determined by AI 
intensity L(t) in Eq. (7).

Proof  Solution of the optimal control problem (3) 
yields Eq. (7).	�  �

It remains to investigate whether L∗ satisfies the 
restriction S(T ) ≥ 0 . Next, we explore the state path 
of stability S(t). Integrating the first-order differential 
equation, we obtain

where k is an arbitrary integration constant. For t = 0 , 
we assume S(t) = S0 . Hence, the optimal state path is of 
S(t) = S0 − t · L . The optimal degree of stability S∗(t) at 
any time hinges on the magnitude of AI’s intensity L. Of 
course, the trade-off has to balance not merely AI’s costs 
and benefits, it equally has to consider the costs of regu-
lation in the end.

(6)
d�

dt
= −

∂H

∂S(t)
= 0.

(7)
∂H

∂L(t)
= WU

dU(L)

dL
+WP

dP(L)

dL
= 0

(8)S(t) = −t · L+ k

Further extension
The model above is assuming a certain AI intensity, which 
is a flow variable over time. It does not accumulate but (x-)
risks do [49]. What happens if L(t) does accumulate?

Suppose the costs of AI usage is lasting and follows the 
change of the disutility function

where α,β > 0 and 0 < γ < 1 . The first term models the 
growth in disutility due to higher AI intensity. The sec-
ond term, βA(t) , denotes an insurance against x-risks. 
Indeed, A(t) represents the willingness-to-protect against 
growing x-risks. The last term expresses the observa-
tion, that a higher magnitude of x-risks do curb due to 
the law of diminishing disutility. Note, we do not assume 
any explicit functions for L(t) now. In essence, the regu-
latory architecture reduces the potential damages and 
costs over time. To complete the model, we have to take 
the variable A(t) into consideration and rewrite Eq. (1) as

The optimal control problem is transformed to

Two aspects are of interest. First, the terminal values of 
the disutility of risks, P(t), and the stability, S(t), are left free 
in the future at time T. Second, both control variables, the 
intensity of AI, L(t), and the insurance payment, A(t), are 
confined in certain ranges. For L(t), the interval is of [0,∞) , 
which means an AI embargo if L(t) = 0 or no policy inter-
vention if L(t) → ∞ . For A(t), the control region is of 
[0, Ā] , where Ā denotes the maximum agreement (insur-
ance level) of a global authority.

By writing the Hamiltonian function, we obtain

where the subscripts of P(t) and S(t) to each costate vari-
able �i indicate the associated state variables. We maxi-
mize H with respect of L(t) and using the Kuhn-Tucker 

(9)
dP(t)

dt
= αL(t)− βA(t)− γP(t),

(10)
dS(t)

dt
= −A(t)− L(t).

(11)

max
L(t)

∫

T

0
W (U(L(t)),P(L(t),A(t),P(t)))dt

s.t.
dP(t)

dt
= αL(t)− βA(t)− γP(t)

dS(t)

dt
= −A(t)− L(t)

P(0) = P0 > 0 P(T ) ≥ 0

S(0) = S0 S(T ) ≥ 0 (S0,P0,Tgiven)

and L(t) ≥ 0 0 ≤ A(t) ≤ Ā

(12)
H = W (U(Lt ),P(Lt ,At ,Pt ))+ �P [αLt − βAt − γPt ] − �S [At + Lt ]
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condition of ∂H/∂L(t) ≤ 0 together with the comple-
mentary-slackness condition L(t)(∂H/∂L) = 0 . We rule 
out the case of L(t) = 0 and logically postulate some 
L(t) > 0.

The complementary slackness condition satisfies

The second derivative is negative and so H is maxi-
mized  (Appendix B). In addition, we maximize H with 
respect to A(t):

Note, A(t) is restricted to the closed set [0, Ā] . If 
∂H/∂A is negative, the left-side of the boundary solu-
tion is A∗ = 0 . If ∂H/∂A is positive, we obtain A∗ = Ā . 
In summary,

Complementary slackness together with Eq.  (13) 
exhibits

Using the last condition in Eq. (15), we obtain

The optimal degree of insurance critically depends on 
�P.

Lemma 1  Insurance against x-risks has no interior solu-
tion: A  ∈ (0, Ā).

Proof  Consider the dynamic equations of the following 
costate variables:

If A∗ is an interior solution, then β�P + �S = 0 . Since 
�S is a constant, this equation shows that �P is a constant 
too. In turn, we obtain

(13)
∂H

∂L(t)
= WU

dU(L)

dL
+ �Pα − �S = 0

(14)
∂H

∂A
= −β�P − �S

(15)β�P + �S

(

>

<

)

0 ⇒ A∗ =

(

0

Ā

)

.

(16)�S = WU ∗
dU

dL
+ α�P .

(17)

WU ∗
dU

dL

(

>

<

)

− (α + β) ∗ �P ⇒ A∗ =

(

0

Ā

)

(18)�̇P = −
∂H

∂P
= −WP + �Pγ

(19)�̇S = −
∂H

∂S
= 0 ⇒ �S = constant

(20)�̇P = 0 ⇒ γ �P = WP

This implies WP to be constant. Since the welfare func-
tion W is monotonic in P, there can only be one value of P 
that would make WP be a constant. Given P0 = P(T ) > 0 , 
the transversality condition reveals

A positive P(t) implies �P(T ) = 0 for all t ∈ [0,T ] . Con-
sequently, a zero value for �P implies an interior solution 
by Eq. (16). Given WU (dU/dL) = 0 , we have a contradic-
tion to the assumptions of WU and dU/dL are both posi-
tive. Consequently, an interior solution for A∗ must be 
ruled out.	�  �

Theorem  2  The optimal policy encompasses a bound-
ary solution for insuring x-risks and requires to define the 
optimal AI intensity L∗.

This boundary solution is related to WU
dU(L)
dL

= �S − α�P . 
Intuitively, the effect of regulating AI’s intensity pass-
through utility, WU (dU(L)/dL) . Both policies need to be 
equated to the respective shadow prices for AI’s stabil-
ity, measured by �S , adjusted by the shadow price of risks 
−α�P . Both policies differ such that

In the first case it is not worthwhile to expand an AI 
insurance scheme because AI’s impact on stability is less 
than the risks. On the contrary, implementing an insur-
ance scheme is recommended, if the trade-off outweighs 
the risks. Distinguishing both cases, we find that the 
parameter β , which measures the efficacy of regulation 
plays an essential role.

Lemma 2  The optimal regulatory degree depends on 
regulatory efficacy β.

Proof  By using Eq. (22).	�  �  

We highlight three insights: (a) regulation of ‘nor-
mal’ risks follow an economic trade-off. (b) insurance of 
x-risks do not follow a trade-off. Indeed, insurance does 
not exist for x-risks and only have a boundary solution. 
Either no insurance A∗ = 0 but consequently high risks 
or full insurance A∗ = Ā , which does not exist, such as 
an insurance for a nuclear power plant. (c) the efficacy of 
regulation is essential. For global AI services the regula-
tory approach requires a global level-playing field.

There are policy implications of our theory. Although, 
we cannot pin down the magnitude of regulation, our 
findings suggest that regulation within accumulating 
damages requires to define the level of AI intensity and 

(21)P(T )�P(T ) = 0.

(22)A∗ =

(

0

Ā

)

⇔ �S

(

>

<

)

− β�P .
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risks a society is willing to tolerate over time. With the 
knowledge of our model, we conclude that identifying 
potential high risks applications is a sensible regulatory 
approach. However, the design of the EU AI-act is not 
necessarily optimal for low to middle risk applications 
because in that corridor perhaps benefits outweigh regu-
latory costs.

Simulation model
The simulation of our model is based on the theory of the 
value of a statistical life (VSL). This is a standard concept in 
a cost-benefit analysis to quantify the monetary value asso-
ciated with reducing the risk of death or extinction. The 
VSL is not the value of an individual’s life per se, but rather 
the value society places on reducing the risk of death (e.g., 
one in a million). In other words, the VSL represents how 
much people are willing to pay to reduce their risk of dying. 
It is derived from observing people’s behaviors and choices 
in  situations involving risk, such as job markets and con-
sumer behavior. The VSL is computed on observable data 
by how much extra pay workers require to accept higher 
risks of death or by surveys asking individuals how much 
they are willing to pay for small reductions in risks.

Today, the VSL is used by policymakers to evaluate 
the benefits of regulations and interventions that reduce 
mortality risks. With this concept policy can decide 
whether new regulations are worth implementing. The 
OECD [27] suggest VSL ranges between $1 to $10 mil-
lion, depending on low- and high-income countries. For 
instance, if a policy is projected to save 100 lives and the 
VSL is $10 million, the benefit is $1 billion. If the cost of 
implementing the policy is less than $1 billion, it is con-
sidered worthwhile.

Note, the VSL estimates vary significantly based on 
the approach and context. For instance, a study compar-
ing different methodologies found average VSL estimates 
for the US ranging from $4.47 million to $10.63 million 
depending on the model [40].

We follow the literature and use maximum estimates in 
order to derive a conservative upper bound. A early study 
by Viscusi & Aldy [48] estimated the VSL across different 
studies and countries. They were finding a range from $1 
million to $10 million, with a central tendency around $6 
million to $7 million. A comprehensive meta-analysis by 
the OECD synthesized numerous VSL studies, reflecting 
a global perspective. This meta-analysis provides valuable 
insights into how VSL estimates vary by country and risk 
perceptions [27]. The VSL numbers range between $1 to 
$10 million.

In addition, there is evidence from the U.S. Environ-
mental Protection Agency (EPA), which use a VSL of 
approximately $6 to $9 million (2020 dollars). VSL esti-
mates in European countries tend to be somewhat lower 

than in the U.S., reflecting differences in income and risk 
preferences. Typical values range from 1 to 5 million 
Euro. The European Commission is frequently using val-
ues around 2 to 3 million Euro in their regulatory impact 
assessments. Estimates by Robinson et al. [30] and by the 
World Health Organization (WHO) range from $1 mil-
lion to $5 million in lower-income countries and up to 
$10 million in high-income countries.

We use the formula in Eq. (23) to quantitatively assess 
the AI induced risks. In order to compute an upper 
bound, we assume a VSL of $9 million globally. The 
benchmark probability in the literature is of 0.001%. The 
expected cost are computed as

For a global population of 8 billion, we obtain for the 
total VSL $72 quadrillion (= 8 billion × $9 million). Con-
sequently, the expected costs are E[C] = 0.00001× $72 
quadrillion = $720 billion. If the global regulatory costs 
are less than $720 billion, implementing AI safety meas-
ures are recommended according to this benchmark 
calculation.

The trivial approach above is based on strong assump-
tions, such as the VSL and the assumption about the 
probability of catastrophe risk. Next, we extend the 
benchmark approach by utilizing the major theorem 
in our analytical theory and combine it with a simula-
tion model. Nonetheless, we stick to the following two 
assumptions: (a) the VSL is of 9bn US-dollar and (b) the 
global population is of 8bn.

Our simulation model estimates the probability of 
risks at the end of this century. The relevant inside of our 
model is that economic stability is reliant to AI inten-
sity. The simulation utilizes economic data for economic 
stability. The change in economic stability over time is 
approximated by the growth rate of total factor produc-
tivity (TFP). The TFP data for the United States (US) is 
downloaded from 1950 to 2034.3

In step one of our simulation model, we need to approx-
imate TFP growth by a polynomial function. This pol-
ynominal approximation is necessary for a Bayesian time 
series model in the next step. We specify the approxima-
tion by a polynominal function of degree 7 (Fig. 1).

In step two, we build a Bayesian time series model for 
TFP growth. This model obtains uncertainty bands for 
TFP growth over the data period of 1950 to 2034. Figure 3 
in Appendix C represents the graphical outcome, includ-
ing relevant upper and lower bounds of TFP growth.

The simulation outcome exhibits potential TFP growth 
bounds for the US. TFP growth ranges between high 

(23)E[C] = prob(risks)× VSL.

3  https://fred.stlouisfed.org/
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growth of 2.8%, middle growth of 2.0% and low growth of 
1.0%. This range is economically realistic, yet it is derived 
from our Bayesian simulation model. This model dynam-
ics is applied to forecast the future probabilities of AI 
related (normal) risks until 2100.

Recall the definition in Eq. (1) that relates the change of 
economic stability to AI intensity. Moreover, remember 

that the inverse defines the AI risk probability. Figure  2 
simulates the risk probability for three scenarios up to the 
year of 2100. The numbers range from low risk of 0.002% 
to middle risk of 0.004% to high risk of 0.006% or levels sig-
nificantly higher for human extinction (due to heavy tails).

Utilizing this information from our simulation model, 
we compute the expected total costs or expected damage 

Fig. 1  Simulation data. Source: author

Fig. 2  Simulation of X-risk. Source: author



Page 8 of 11Herzog ﻿European Journal of Futures Research           (2024) 12:18 

by applying Eq. (23). The results are reported in Table 1. 
The numbers range from 1.44tr to 4.32tr US-dollar.

The risks and total costs of extreme high-risk applica-
tions, such as defined by the EU AI-act, should be pro-
hibited according to our theory because those risks have 
a boundary solution anyway. Yet, at the same time, the 
normal scenarios which are based on the numbers above 
indicate that for applications below the extreme high-risk 
threshold should refrain from AI regulation. Note, the 
expected total costs of 4.32tr US-dollar for global dam-
ages until 2100 must be balanced to the total future ben-
efits of AI applications until 2100. The current benefits 
from applications in areas of health, education and indus-
try are significant but do not include the potential ben-
efits over the next 70 years. Most future applications are 
in its infancy or even not developed. The economic dam-
age of 4.32tr in 2100 in relation to world GDP of 105tr US 
dollar in 2024 likely outweigh the future potential costs of 
AI applications over the next 70 years.

Discussion
The nature of the singularity hypothesis proposed by 
Kurzweil [20] assumes human labor is replaced through 
artificial intelligence  [24, 33]. This requires both task 
automation and task innovation. Theoretical and empiri-
cal evidence by Acemoglu & Restrepo [1] does support 
task automation. However they find no evidence that 
humans are obsolete in complex innovation processes. In 
this domain labor might have a comparative advantage.

Our approach is useful to stimulate future research in 
that field. Naturally, all of this is speculative, but it helps 
to better understand why earlier dynamics differ or equal 
the future. Our interdisciplinary approach has merits and 
challenges, yet follows a rigorous perspective [5].

The model presents a comprehensive framework for 
evaluating the trade-off between the benefits and risks 
associated with increasing intensity of AI technology, 
particularly in the context of potential x-risks posed by 
the advancement towards artificial general intelligence. 
The focus is on balancing the utility derived from AI 
against the disutility arising from the associated risks.

We observe a nexus between economic stability and 
AI intensity. The model posits that economic stability, 
S(t), is intrinsically linked to the intensity of AI, L(t). 

As AI intensity increases, it accelerates long-term eco-
nomic growth and enhances economic stability on the 
one hand. The exponential growth of AI usage over 
time, however underscores the accelerating pace of 
technological adoption and (x-)risks on the other hand.

The utility function U(L) and the disutility function 
P(L) of risks have distinct characteristics. While util-
ity exhibits diminishing marginal returns, risks display 
increasing marginal disutility. The welfare function 
incorporates these opposing effects, ensuring that any 
optimization considers both the positive and negative 
impacts on societal welfare.

The optimal control problem aims to maximize soci-
etal welfare over a given time horizon by determining 
the optimal AI intensity L∗ . The regulation of AI must 
navigate the delicate balance between fostering tech-
nological innovation and safeguarding against poten-
tial risks. The model suggests that high AI intensity 
can drive economic stability, it also necessitates care-
ful regulation to manage the associated risks effectively. 
The boundary solution for insurance against x-risks 
indicates that the optimal regulatory policy may involve 
no insurance A∗ = 0 or maximum insurance A∗ = Ā , 
depending on the efficacy parameter β.

Our findings imply that regulatory policies like 
the EU AI-Act, which aim to preemptively address 
extremely high-risk applications, are well founded. 
However, for low to medium-risk applications, the 
model suggests that benefits may outweigh the costs, 
and overly stringent regulations could stifle innovation. 
A nuanced approach aligns with the broader litera-
ture on catastrophe risk management, advocating for 
preemptive action in high-risk scenarios, while allow-
ing for flexibility in lower-risk spaces.

The main findings of our simulation model support 
the analytical theory. By utilizing a Bayesian time series 
model, we provide a structured framework to esti-
mate the future probabilities of catastrophic AI-related 
events and their associated costs. The concept of VSL is 
pivotal in our cost-benefit analysis, offering a quantifia-
ble measure to evaluate the worthiness of interventions 
aimed at reducing mortality risks.

The simulation results are depicted in Fig. 2. We find 
a variability in potential TFP growth, ranging from high 
(2.8%) to low growth (1.0%). In addition, we obtain a 
prediction of risk probabilities from 0.002% in a low-
risk scenario to 0.006% in a high-risk scenario, trans-
lating to potential costs ranging from $1.44 trillion to 
$4.32 trillion.

Our findings support the view to prohibit existential-
risk applications via stringent regulation. However, at the 
same time, they indicate for applications below the high-
risk threshold, no or low regulation. The projected upper 

Table 1  Accumulation of potential costs of AI-Risks in 2100. 
Source: author

Simulation Scenario Trillion 
US-Dollar

High-Risk Scenario 4.32

Middle-Risk Scenario 2.88

Low-Risk Scenario 1.44
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bound of ‘normal’ risks of $4.32 trillion by 2100 must be 
weighed against the anticipated benefits, particularly in 
sectors such as health, education, and industry. Given the 
potential benefits and the nascent state of many AI appli-
cations today, a balanced regulatory approach is essential 
to harness AI’s positive impact while mitigating its risks.

The estimation of the costs of x-risks are difficult due 
to high future uncertainties and unknown unknowns. 
Turchin & Denkenberger [47] suggest to apply a kind of 
‘Torino scale’ of asteroid dangers, ranging from the color 
white (no risk) to red (extreme risk). Interestingly, they 
predict AI’s x-risks as high (red color) within the next two 
to three decades, while the x-risks of a pandemic as low 
(yellow color). This is noteworthy, given we have faced a 
global pandemic in 1918 and 2020 but we have not seen 
a technological induced human extinction since the 1st 
industrial revolution. Thus, the impact assessment of AI 
technology in the background of technological develop-
ment of the past relates the perspective.

Similarly, Yudkowsky [52] estimate AI x-risks as high 
because people conclude too early that they understand 
the technology. After the public release of ChatGPT 
almost all interested academics, business persons, or pol-
icy-makers claim to understand either the treat or merit of 
AI technology. In that regard, Yudkowsky [52] was right, 
“it is very easy for people to think they know far more 
about Artificial Intelligence than they actually do”. Our 
model intends to estimate the risk without assuming to 
understand the unknown development of AI technology 
and without having subjective perceptions about potential 
risks or benefits. Our estimates are based on sparse param-
eters and utilizes the value of a statistical life concept.

In addition, there are further objections of the singular-
ity hypothesis. Infinite growth requires energy but energy 
is limited and is not superabundant. An infinite dynamic 
would violate basic laws of nature among others the sec-
ond law of thermodynamics. An open research question 
is the degree of substitutability between AI and human 
labor in human-dominated domains, such as innovation, 
government or regulation of technology.

Future research should  focus on refining risk prob-
ability estimates and extending the analysis to other 
countries and regions, considering their specific eco-
nomic conditions and AI adoption rates. Additionally, 
exploring alternative models and incorporating further 
economic data will enhance the robustness of our find-
ings. Understanding the interplay between AI advance-
ments and economic stability remains crucial for 
developing effective policies that safeguard against cata-
strophic risks while promoting innovation and growth. 
Moreover, future research should consider the dynamic 

accumulation of AI-related risks and the potential long-
term impacts on societal welfare. Extending the analyti-
cal model to include more granular risk assessments and 
varying regulatory efficacy across different AI applica-
tions could provide deeper insights into optimal regula-
tory strategies. Additionally, empirical validation of the 
model’s assumptions and predictions would strengthen 
the robustness and applicability of the findings.

In summary, our model highlights the critical impor-
tance of balancing the benefits and risks of AI technology 
through thoughtful and adaptive regulation. As AI con-
tinues to evolve, policymakers ought to remain vigilant in 
managing its impact on economic stability and welfare, 
ensuring that the trajectory towards AGI is both benefi-
cial and safe for humanity.

Conclusion
This paper identifies insights and policy conclusions for 
the design and regulation of artificial intelligence. In 
order to reduce risks an efficient and dynamic regula-
tory approach ought to be enforced. The impact of risks 
and the role of regulation is determined by AI-intensity, 
regulatory efficacy and substitutability of human labor.

We thoroughly discuss the implications of our com-
bined analytical model and simulation approach. The 
analytical model explores the economic trade-off between 
benefits and costs. Our simulation is grounded in the VSL 
theory and bolstered by Bayesian analysis. This modelling 
framework offers a comprehensive setup for evaluating 
the economic implications of AI-induced risks. Projected 
costs of artificial intelligence underscore the need for tar-
geted regulatory measures, particularly in distinguish-
ing between high- and low-risk applications. Achieving 
a balance between the potential costs and benefits of 
AI advancements will be crucial for ensuring a safe and 
prosperous future. The evolving nature of AI technology 
and its economic impacts requires continuous research 
and adaptive policy frameworks to effectively address the 
shifting landscape of AI risks and opportunities.

Appendix A. Proof of Lemma 1
The second derivative of ∂2H

∂L(t)2
 based on the (5) yields: 

sign ∂2H
∂L(t)2

= UFF

[

dF
dL

]2

+UF
d2F
dL2

+ UPP

[

dP
dL

]2

+UP ∗ d2P
dL2

< 0.
That proofs Lemma 1, due to model assumptions.

Appendix B
The second derivative of Hamiltonian in the extended model 
yields: ∂2H/∂L(t)2 = UFF (dF/dL)

2 + UF (d
2F/dL2) < 0.
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Appendix C

Fig. 3  Simulation of bayesion potential growth until 2100. Note: On the x-axis the zero stands for 1950 and ranges up to 2034. The labelling is different 
due to simulation. Source: author
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