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Abstract 

Emerging energy systems are inherently different from their conventional counter-parts. To address all issues of these 
systems, comprehensive approaches of transdisciplinary and post-normal sciences are needed. This article tries to 
re-conceptualize emerging energy systems using Robert Rosen’s theory of anticipatory system and introduces the 
concept of the anticipatory smart energy system (ASES). Three important features of an ASES are described and 
socio-technical considerations for realization of these features are discussed. The article also considers realization of 
such systems under society 5.0 paradigm and spime techno-culture. In ASESs, the identity of users evolves and new 
identities are created for energy users, based on the production, consumption, storage, and distributed management 
of energy. An Anticipatory energy system can manage a common pool of prosumaging.
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Introduction
In technical and social systems preparation for the 
future is conducted in various ways from forecasting 
to simulation, from planning to trend extrapolation, 
and from scenarios to anticipation [1]; some of these 
approaches have been used to investigate and har-
ness the uncertainties associated with nascent energy 
systems [2–4]. Recently, anticipation and anticipatory 
systems have drawn attention “as a mediating process 
between knowledge and action” in socio-technical sys-
tems [5]. Underlying features of anticipatory systems 
can be utilized in any socio-technical sphere including 
energy, sustainable development, and public health [6]. 
In this article we have tried to apply anticipatory sys-
tems to re-conceptualize SESs and investigate transi-
tions toward it.

Decentralization and the cyber-physical integration 
have shaped SESs. Amalgamation of energy consump-
tion, production, distribution, global energy supply, and 
demand, various energy resources such as fossil fuels and 
their alternative fuels, RE resource, economic and envi-
ronmental aspects [7] and the social impact of each one 
on human life and the dependence of governance on it, 
has transformed energy field to a complex area [8–13]. 
Essentially, these energy systems— as socio-technical 
systems— are “more than the sum of [their] elements” 
[14] and are under the effect of multiple drivers of change 
[15]. Therefore, energy research should be purpose-
ful, systematic and problem-focused [16]. Disciplinary 
approaches single-handedly are not sufficient to study 
and theorize about SESs. Borrowing from Popper (1963), 
energy field scientists are not students of some subject 
matter, but students of problems. And problems cut right 
across the borders of any subject matter or discipline [17]. 
For this reason, some interdisciplinary [18] and multidis-
ciplinary approaches [19, 20] have been proposed. For 
example, integration of social and technological aspects 
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of SESs with help of information and communication sci-
ences has created some interdisciplinary fields, namely, 
1. Energy informatics [21–23]; 2. Social informatics [21, 
24–28]; 3. Energy Social Sciences [21, 29, 30]; 4. Social 
energy informatics [21].

While interdisciplinarity and multidisciplinarity offer 
substantial added value in grappling with problems 
of SESs, transdisciplinary approaches which consider 
users as active participants across energy supply chain 
as opposed to passive consumers are the missing chain; 
therefore, interdisciplinarity and multidisciplinarity plus 
actors’ participation can solve real-world problems of 
energy systems [31]. In fact, actors’ participation is a key 
concept of post-normal science [32].

Anticipation as a transdisciplinary approach, is an 
active future sense-making and a way to include col-
lective action and actors’ participation [33]. Studying 
social anticipatory capacity is not truly feasible without a 
model-based approach [34]. Rosen (1991), believes: “per-
ception of anticipatory systems is crucial for planning-
based decision making” [35].

This paper aims at providing insights on the SESs 
using an anticipatory system perspective to criticize and 
enhance top-down and disciplinary existing energy sys-
tem approaches; it highlights the significance of bottom-
up, transdisciplinary and post-normal approaches as the 
possible future complement/alternative of conventional 
approaches.

In this paper, we review the transdisciplinary problems 
of emerging energy systems with transdisciplinary solu-
tions presented in the literature, then we introduce the 
concept of anticipatory systems and its three features. 
Subsequently, we describe its relevance and significance 
in management of SESs. In fact, we provide reconfigura-
tion of SESs and their problems and solutions from the 
perspective of anticipatory system as a transdisciplinary 
lens. Juxtaposition of familiar and frequently-used con-
cepts of SESs with those associated with anticipatory sys-
tems sheds light upon incipient energy systems.

The problems of energy systems in transition era
In the literature, a wide array of technical problems con-
cerning the emerging energy systems have been reviewed 
and solutions have been presented [36–52]. At the heart 
of this approach, there is a top-down, disciplinary and 
merely technical essence trying to reduce problems and 
solutions to physical aspects and to SGs. Nonetheless, 
there is ample evidence that emerging energy systems 
are social grids and need to be embraced by post-normal, 
social, transdisciplinary and bottom-up approaches. The 
following table is a collection of problems and proposed 
solutions concerning the social grid and is the result of 
a systematic literature review. In the identification phase 

of the systematic review, a comprehensive analysis of the 
review papers related to SESs published in top 10 inter-
disciplinary journals of energy was conducted to provide 
an initial array of keywords. This array was then com-
bined with our list to do the systematic review. Our key 
words included but were not limited to: smart energy sys-
tems, future of energy systems, interdisciplinary energy 
systems, trends of energy systems, emerging technologies 
of energy systems, social aspects of energy, barriers of 
smart energy systems and integrated energy systems. The 
database sources used were Scopus, Google Scholar, and 
IEEE. The period studied ranges from 2010 to 2020 and 
the search was carried out using the “Title/Abstract/Key-
word” field of the databases. 284 papers were chosen. In 
the screening phase, non-English and conference papers 
as well as duplicates were removed giving us total of 153 
articles. In the next step, the papers were scanned by two 
of the authors independently and two separate lists were 
created. The lists were compared and finally 31 papers 
were selected for full analysis. As for our exclusion/inclu-
sion criteria, a substantial chunk of the literature focused 
on merely technical/hard aspects and problems of SESs 
(Fig.  1). Our focus, though, was on the inter/trandisci-
plinary side of theses system. In other words, based on 
our approach which is inherently inter/transdisciplinary, 
we focused on human/participatory/soft aspects of SESs. 
Therefore, Table  1 gives quite a comprehensive list of 
inter/transdisciplinary issues of SESs which have a social, 
economic, cultural or environmental dimension.

After introducing the concept of anticipatory systems, 
we will try to create a broader picture of some these prob-
lems and solution in the light of anticipatory systems.

Anticipatory systems: its definition and positioning 
in future research community
Anticipation is the ability to look forward to taking a 
future decision and action, or the visualization of a future 
event or state [34]. Forming the future of each system is 
associated with its anticipatory capacity [6]. The anticipa-
tory capacity of the system is the capacity to continuously 
develop and apply the knowledge acquired to choose the 
best way for stakeholder needs [34].

Anticipation is the human “sense of context” that ena-
bles a system (biological, social, political) to adapt to 
change [82]. By accurately identifying our situation, we 
can “create different models of the future” and integrate 
change. Otherwise, change leads to shock, unpropitious 
reactions and system failure [83]. New generation of 
energy systems as a “common pool of prosumption” will 
face shocks of this nature such as frequent shut downs 
of the utility grid because of uncertainty in availability 
of RE sources as well as distributed and decentralized 
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production. The speed and volatility of change in this sys-
tem increases its complexity [83].

The theory of anticipatory systems was developed by 
Robert Rosen. He claims that the development of antici-
patory systems theory would lay the foundations for what 
may be called an anticipatory paradigm [84] in contrast 
to reactive paradigm. So what is an anticipatory system? 
Robert Rosen (2012) defines the anticipatory system as 
follows:

“An anticipatory system is a system containing a pre-
dictive model of itself and/or its environment, which 
allows it to change state at an instant in accord with the 
model’s predictions pertaining to a later instant” [84].

Anticipatory systems can be an important step in 
responding to the challenge of unpredictability and 
its consequences [85–87]. Rosen (1974), notes that 
from anticipatory architecture, “different views on the 
nature of “planning”, “management”, and “policies” can 
be extracted” [88], and a “technology of policy genera-
tion” can be devised [89]. This new window to planning 
for the future of system refers to difference between 
prediction and anticipation. Anticipation considers a 
variety of future possibilities and thus the current state 
of an anticipatory system depends not only on a previ-
ous state, but also upon possible future states [82, 83]. It 
adjusts present behavior in order to address future prob-
lems [1], whilst, prediction talks about probabilities in 
future. Anticipatory systems involve predictive models 

and their environment, and these models are used to 
control current activities [82, 84]. Control is essential 
in conceptualizing the difference between reactive and 
anticipatory systems: reactive control (feedback con-
trollers) corrects existing deviation, while anticipatory 
control (feed-forward controllers) depends on predicted 
deviation that monitors the system [1, 89, 90]. Therefore, 
an anticipatory system is a self-observing and self-refer-
ential system [1].

The concept of anticipatory systems “has received 
attention as a part of a growing discourse on Anticipa-
tion” [5] and have been used as a theoretical perspective 
by the futures research community. The special issue of 
foresight journal [91] contends that Rosen’s anticipatory 
systems can help to improve the philosophical founda-
tions of foresight. Roberto Poli (2010), traces the concept 
of anticipation in variety of disciplines and distinguishes 
between anticipation as an empirical phenomenon, on 
the one hand, and investigation of internal structure of 
anticipatory systems, on the other hand [1]. In another 
paper, Poli (2010) reviews some subtleties and com-
plexities of Rosen’s work and states that anticipation as a 
capacity does not exclusively belong to humans as cog-
nitive agents but is present in all types of realities [85]. 
As a student of Rosen, Louie (2010) states the predictive 
component of an anticipatory system can make future a 
constitutive component of the present and shift the focus 
from “what future is” to “how it should be used” [89]. 

Fig. 1  The process of conceptual literature review
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Rossel’s paper (2010) directly addresses the question of 
how we can use anticipatory systems in tackling complex 
social dynamics. He propounds that the original mathe-
matic-oriented theory of Rosen cannot be used for this 
purpose unless it is “reinforced by other theoretical con-
siderations.” His suggestion is to use framing and meta-
framing for reinforcement of the concept of anticipatory 
systems [92]. Fuller (2016), discusses scenario planning in 
the light of Rosenian anticipatory systems and suggests 
that epistemology of anticipatory systems combined 
with methodology of post-normal sciences can “be used 
to reduce Cartesian anxiety with respect to ontologi-
cal insecurities of uncertain times” [5]. Cevolini (2016) 
boldly claims that “Social sciences are experiencing an 
anticipatory turn. He refers to self-referential dynam-
ics— as Robert Rosen does— of an anticipatory detector 
between weak and strong signals [93]. In a similar vein, 
Poli (2014) speaks of turning human and social science 
upside down with the advent of anticipation [94]. Chiffi 
et  al. (2020) argue that anticipation in science is value-
dependent and values can be interpreted in epistemic 
and moral senses or from a social, political, and strategic 
aspects [95]. Kazakov and Kunc (2016) apply the concept 
of anticipatory systems to re-conceptualize the dynam-
ics of strategy. They propose that “modeling and simula-
tion can improve managers’ mental processes and help 
them to overcome cognitive limitations” [96]. Distinc-
tions have also been made between implicit and explicit 
anticipation as well as strong and weak anticipations. 
Poli (2010) defined explicit anticipation as predictions 
and expectations which system is aware of. In contrast, 
implicit anticipation is a type of anticipation that the sys-
tem is not aware of and is active within the system [1]. 
Dubios (2003) differentiates strong anticipation form 
weak one. Strong anticipation is built by system itself or 
embedded within it whereas weak anticipation is based 
on the model of external environment of the system and 
can be compared with predictions and expectations [97]. 
But, what are the constituent element of an anticipatory 
system?

The model of Rosen’s anticipatory systems begins with 
the S system, which may be an individual organism, an 
ecosystem, a social or economic system. The second sys-
tem—M— is a model of S. The only prerequisite is that 
the dynamic evolution of M is faster than the dynamic 
evolution of S [88], and acts in real-time so that the over-
all system can predict changes to the environment [5]. 
A set of E effectors (E) allows M to operate on S or on 
environmental inputs to S to alter the dynamics of S. As 
Rosen mentioned, “M sees the future of S because M 
trajectories are faster than S trajectories” [98]. Figure  2, 
illustrates the logical links between S, M and E in a very 
simple way.

According to Rosen’s theory, the main features of this 
architecture are as follows:

1.	 M and S are coupled;
2.	 M is not unique;
3.	 The resultant signal from M triggers action in system S.

Rosen introduces the concept of anticipatory sys-
tems with a mathematical/hard system approach that 
deals with weak and explicit anticipatory model. If we 
want to use such a strong and implicit model to study 
future energy systems, it must be a combination of 
social and engineering systems. As Marien (2009), 
highlights “technopia” and technical solutions can-
not single-handedly lead to anticipatory systems [100]. 
Rossel (2010) suggests using constructivist approaches 
and considers M as framing and meta-framing [92]; 
therefore, M cannot include only technical issues 
and must be developed as a socio-technical system. 
Caillol (2016), puts emphasis on decentralization and 
network-based organization. For him, M is essentially 
information. Fuller (2106), explains about uncertain 
environments in social systems, and the necessity to 
recognize multiplicity of modeling relations [5]. In his 
idea, M can be regarded as scenarios. In our paper, we 
have followed Rossel’s suggestion to combine the per-
spective of anticipatory systems with other theoretical 
considerations to re-conceptualize the complex SESs.

How can we create an ASES
So how can we develop M? In the case of energy systems, 
our question is: how can we create an anticipatory energy 
system? What we are trying to do is applying Rosen’s 
architecture to re-conceptualize socio-technical sys-
tems of energy. In this section, we are going to describe 
three above-mentioned features of the anticipatory sys-
tem for SESs. Firstly, the nature of coupling of M and S 
and its significance will be discussed; The second ques-
tions is why M is not unique; and thirdly, we will discuss 
the most important output of an anticipatory system i.e. 
actions and how they can be mediated via effectors.

M and S are coupled
What makes an anticipatory system a practical real-
ity is M (as the model of S) and S (the physical system 
under study) being thoroughly coupled. For SES, the 
anticipatory pre-requisite condition of that coupling is 
total integration of social and technical (socio-techni-
cal), social and physical i.e. closer social distance [55], 
real and virtual [101], technic and culture of prosumers 
(techno-culture) [102], production and consumption i.e. 
prosumption [103], physical and digital (phyigitalization) 
[104], time and space i.e. spime [102], present and future 
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(enlarged present) [83], social and ecological (socio-eco-
logical) [105], electricity prosumption and storage (pro-
sumage) [106], control and prosumption (user-control) 
[55], prosumers and devices (Social Internet of Energy: 
SIoE) [107], energy user behavior and actions [108], 
information technology and power grid, and finally DG 
units in a cooperative MG [55].

As Mankoff (2013) says, the integration of humans and 
machine can solve sustainable development problems 
[109], caused by the rapid and radical changes in tech-
nological developments, especially in the energy indus-
try, integrated energy systems have been created to cope 
with these changes [110]. Particularly, the SES concept, 
as an integrated energy system, represents a paradigm 
shift from single-sector thinking to a coherent energy 
systems understanding, i.e. from centralization to decen-
tralization, and reflects the benefit of the integration of 
all energy sectors and infrastructures [111]. In fact, SESs 
offer benefits such as efficiency, effectiveness, cost, inte-
grability, environment protection and reduction of green-
house gases, resource use, sustainability, and commercial 
viability [112]. Lack of integration in the traditional anal-
ysis of energy systems has culminated in uncertainty 
[105]. Integration which is manifested in complete cou-
pling of M and S is a necessary condition to make an 
ASES a viable option. Now, how can complete coupling 
and integration of S and M be achieved so that the whole 
system will benefit from anticipation as a disposition? 
The answer is via some key concepts creating integration 

in SESs, including but not limited to decentralization, 
VPP, MG, SG, SM, EI or IoE, and EBD, prosumption, 
spime, wranglers and society 5.0 which will subsequently 
be reviewed.

We suggest that spime and wrangler as the most 
important concepts to adequately describe socio-tech-
nical aspect of SESs and tackle a wide array of problems 
discussed in Table 1; We consider spime as an umbrella 
term for technical integration and wranglers for socio-
technical integration. Also, wrangler and spime are con-
stituent elements of society 5.0.

Spime
Spime, the integration of space and time, are artificial 
tools whose information support is vast and rich and can 
be referred to as the material representation of imma-
terial systems. They begin and end with data, they are 
designed on screens, made by digital tools, and tracked 
precisely through space and time [102]. Spime concept 
is intended to theorize the ongoing emergence of the 
very systems and infrastructures, used to trace it and is 
a theoretical image of future production, consumption 
and cultural practices [113]. The concept of spime leads 
to an IoT in its limited state, by transforming the physi-
cal world (S) into data (M), enabling foreboding and even 
future creation, but spime is inherently more “cyclical, 
ongoing and sustainable” than IoT products [114, 115]. It 
is as multidimensional and broader lens [114]. The closer 
distance of space and time leads the system to act in real-
time. For example, being flexible in terms of energy usage 
means having the ability to shift energy usage in time and 
space. In this regard, flexibility capital is defined as the 
capacity to responsively change patterns of interaction 
with a system to support the operation of that system 
[116], or control physical processes at multiple time and 
space scales with pervasive and mobile networks at sev-
eral sensors and actuator levels [19]. These are anticipa-
tory capacities that let the system act in real-time.

Spime is considered as a tool to represent techni-
cal integration of the systems; it includes VPP, MG, SG, 
SM, EI, EBD and other modern technical concepts in 
socio-technical SESs. Nonetheless, spime is the emerging 
techno-culture and has social aspects as well.

From a socio-technical perspective, energy spimes 
are informationally-rich energy-based data and com-
prise two-way flow of energy and information produced 
by users in a wide variety of socially-driven activities in 
ASESs. Such activities encourage action-learning and 
social innovations. In order to review ESTs, let us begin 
with decentralization. Proliferation of RE resources 
precipitated a paradigm shift from centralized energy 
resources to decentralized ones [74]. Distributed produc-
tion and consumption, created DG [55] and distributed 

Fig. 2  The internal structure of the simplest anticipatory system [99]
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energy system as an efficient, reliable and environmen-
tally friendly alternative to the traditional energy system 
[117]. Decentralization is in essence a socio-technical 
integration which not only transformers the role of end 
users but alters the essential hierarchical architecture and 
top-down management of existing energy systems.

Energy spime tools
ESTs, as symbol of technical integration in our view, are 
a new category of space-time, location-aware, environ-
ment-aware, self-logging, self-documenting, uniquely 
identified energy devices that provide a lot of data about 
themselves and their environment [118] and are self-
healing [21].

For example, VPP as an EST, is a cloud-based dis-
tributed power plant [119] and refers to the integration 
of diverse sources of DER which enables management 
of large-scale power grid flexible capacity [120]. VPPs 
are often ad-hoc prosumer groups that are connected 
through an electricity grid [65]. A community-based 
VPPs is as a novel model for energy provision [121].

Another EST is MG, a socio-technical small-scale 
power grid designed for a low voltage distributed system 
[122]. Technically, MGs increase resilience during major 
disturbances [123]. The actors who ‘decide’ to integrate 
their DG units in a cooperative MG constitute a com-
munity [55]. MGs can be considered as CPRs in Ostrom’s 
theory [124]. Integrated MGs build SG, a larger grid and 
socio-technical network of both information and energy 
flows, in order to control practices of production, con-
sumption, storage and flexible demand [55], storing, 
communication system, and decision making in real-time 
[125–127]. In fact, SG is an electricity network that can 
intelligently integrate all the behavior and actions of all 
users connected to it [108]. The next generation of SG 
is the 5th generation SG based on Light Fidelity or Li-Fi 
technology that uses radiofrequency [128] and is creating 
a boom in the new EI. The function of 5G SG as an energy 
spime tool will make M and S more coupled resulting in 
a higher degree of integration in all previously discussed 
aspects of ASESs.

The next EST is SMs which are networks of energy 
flows and information which monitor, display and control 
energy demand and supply from various sources, account 
storage capacity and consider the patterns of loads of all 
equipment [55].

EBD is also an EST that unfolds historical precedents 
and future opportunities of user energy life style. EBD 
can optimize electricity generation, distribution, and 
operations in real-time for better planning [129] by 
accurately forecasting electricity demand and detecting 
electricity consumption patterns, detecting and repair-
ing failures effectively, developing a dynamic pricing 

mechanism and enabling customers to have more control 
over their energy use [124]. Therefore, analyzing an EBD 
can be used to anticipate SESs future changes [125].

EI is a new energy spime, integrating RE, distributed 
power plants, storage technologies and EVs [130], mod-
ern electronic technology, new energy technology, and 
information technology to coordination [131]. The EI 
features are a combination of SG and IoT features [132, 
133]. A future perspective for EI, on one hand, is its com-
bination with block chain technology, which can act as an 
effective technical way to share information and update 
model in a decentralized operational framework with a 
cloud-based energy management system platform [134]. 
On the other hand, SIoE will integrate prosumers and 
devices via social relationships [56]. Community and 
SIoT, the combination of block chain technology with 
EI and SIoE are manifestations of future higher levels of 
integration. Figure 3 summarizes ESTs. In an ASES, some 
of these ESTs are absolutely essential in designing the 
technical signals for effectors.

Wranglers
Sterling (2005), points to the evolution of the human role 
in various techno-cultures in a chronological order: the 
techno-culture of artifacts, machines, products, gizmos, 
and spime. He calls human identity and role in each of 
these techno-cultures, respectively the “farmer and the 
hunter”, “the customer”, “the consumer”, “the end-user”, 
and “the wrangler”, and emphasizes that the evolution 
of these techno-cultures is linear and irreversible [102]. 
Wranglers are the people who interact with spime [102]; 
and experience the maximum integration between cyber 
and the physical as well as real and virtual spaces.

New energy identities: from consumer to prosumager
Along with Sterling’s point of view as a futurist, Ritzer 
(2009), dubbed coming century as the “age of the pro-
sumers” [135]. Prosumer identity is created by integra-
tion of producer and consumer as Toffler explains [103]. 
ubiquity of the internet, it has gained popularity and sig-
nificance in many areas [136–139]. Of course in SESs, the 
prosumer identity transforms identity of passive users of 
energy and personalizes the process of energy use [21, 
140]. So, prosumers produce and consume RE,, store 
surplus energy for future use, or trade energy with other 
energy customers on their respective SG [141]. They are 
next generation of prosumers and are called prosumag-
ers1 [106, 142, 143]. who store their energy surplus in 
a distributed storage network [106].Therefore, a new 
identity is defined for prosumer in the future of energy 

1  A coinage for an energy prosumer who produces, consumes and stores.
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systems which could potentially change energy manage-
ment in SGs and shift it toward distributed management 
[144]. New relationships emerge: prosumager-prosum-
ager, prosumager-utility, prosumager -grid manager, pro-
sumager-partners in the MG, which all can be considered 
as different levels and layers of integration and coupling 
between M and S.

As far as the social macro-level is concerned, individual 
prosumer is too small to compete with traditional energy 
generators, and individual power supply is unpredictable 
due to weather conditions. These challenges in produc-
tivity and reliability have led to the emergence of PCGs, 
ICESs, and CECs [65], which hedge risks associated with 
decentralized energy systems through pooling people.

The PCG refers to “a network of prosumers who have 
relatively similar energy sharing behaviors” who strive to 
pursue a common. A group of prosumers that collectively 
sell energy to the grid and are more efficient and reliable 
in supplying a sustainable energy source than a prosumer 
operating as an individual entity or identity [144]. To 
address the shortcomings in existing prosumer groups”, 
the concept of Virtual Goal-oriented PCG has emerged 
which is created by virtual integration of prosumers from 
different locations, but with similar energy behaviors [65].

Also, ICESs have been created to cope with the rapid 
and radical changes in the energy industry caused by 
technological developments [110] and are a type of rede-
sign of local energy systems, through DER and the par-
ticipation of local communities [110, 145].

CECs are another form of prosumer group with pur-
pose of cleaner energy production, consumption, supply, 
and distribution, that can be centralized, decentralized 

and dispersed and take many forms, including peer to 
peer, VPPs, and micro-networks [146].

These communities can create a dynamic ecosystem 
of prosumer engagement [147], and transform passive 
consumers into active prosumers, and enhance public 
engagement in ASESs, because of their micro-network 
form and internet connection and therefore increases 
anticipatory capacity of the ASESs.

In sum, looking at the evolution of the role and identity 
of people in the field of energy, it can be said that pro-
sumager is considered a form of micromanagement that 
affects the macro-management of energy ASESs.

Society 5.0: integration of integrated society
Complete coupling of M and S and a very high level of 
integration between different elements of system will cre-
ate a socio-technical architecture which is inherently dif-
ferent from its predecessors. The concept of society 5.0 
developed by the Japanese government in 2016 can give 
us an image of what an ASES populated by wranglers 
might look like. Society 5.0, based on society 4.0 (infor-
mation society), is a super-smart and human-centered 
society [148]. Society 5.0 is a system using digital trans-
formations, network, IoT, EI, Artificial Intelligence, and 
Robotics which connects ‘People to Objects’ and the ‘Real 
to Cyber’ world [149]; Society 5.0 achieves a high degree 
of integration between virtual space and physical space. 
Unlike society 4.0 where big data in cyberspace is ana-
lyzed by a human, in society 5.0, it is analyzed by artifi-
cial intelligence [150]. These features will bring new social 
impacts [149] and enhance the quality of human life [151].

Fig. 3  Energy spime tools
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Society 5.0 as a CPSS [152] is born as a result of the 
paradigm shift from the Newtonian systems to the para-
digm of the self-enforcing and self-fulfilling systems. Fig-
ure  4 gives a summary how coupling between M and S 
are achieved in ASESs:

Structural coupling of M and S along with socio-
technical integration of machine, information, and 
society (humans) as well as bidirectional flow of energy 
and information creates anticipation as a disposition in 
energy systems i.e. ASESs.

M is not unique
Technical solutions for energy system problems are insuf-
ficient. As far as dealing with ever-increasing environ-
mental complexity is concerned, if M is considered to be 
a data-driven centralized commandant control system, 
it cannot grapple with unpredictable demands of nas-
cent energy systems. As Ashby (1956) proposed, the only 
thing that can absorb variety is variety [153]. In his view, 
if the number of system responses is comparable to the 
complexity of the environment, such a system can coun-
teract the complexity of its environment. Therefore, as 
dynamics of S change constantly, M cannot be singular 
and unique.

M is a predictive model, which interacts with ‘real-
ity’ and intertwines, evolves and adapts in a continuous 
process of simulation [154]. Prediction in modeling and 
simulation is to achieve future estimations. On the one 
hand, prediction can be based on statistics, differential 

equations, neural networks, cross-impact analysis, and 
other methods used in hard sciences, and on the other 
hand, prediction can be done with the help of ‘crowd-
sourcing’ and integration of biological and non-biologi-
cal computations. Simulation, based on crowdsourcing, 
can be represented by society [155].

In spime techno-culture, new forms of social con-
nectivity and communication unfold and each wran-
gler functions as a node in a hyper-network over the 
EI [104] who are both the totality of the network and 
one of its elements. So perceptions of the wranglers and 
their responsiveness accelerate [104] leading to the cre-
ation of simulated WRCs.

Simulation based on this network of wranglers 
together with computational capacity of the comput-
ers is a kind of crowdsourcing simulation including all 
prosumagers. Therefore, the network of people in the 
crowdsourcing process acts like a computer— “net-
work is the computer”. In this case, a wide variety of 
Ms. are created by combining people’s expectations in 
WRCs resulting in an emergent collective intelligence 
of a community of users who interact in a decentralized 
manner.

Wranglers as stakeholders of future energy systems, 
increasingly, have the option to become more self-suf-
ficient by becoming co-prosumagers of electricity and 
of course controllers of that the system. So production, 
consumption, storage and control will be distributed and 
wrangler-oriented.

Fig. 4  Realization of coupling between M and S in ASESs
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The resultant signal from M triggers action in the system
The challenges of any kind of man-made system are 
enhancing the connection to reality and improving the 
capacity to translate information into action [83]. Real-
time actions in energy systems cannot be achieved by 
focusing on technical aspects and neglecting the social 
aspects. Technology and equipment are necessary but 
insufficient conditions for reliable system operation, 
human involvement is at least as equally important as tech-
nological solutions [77]. So, successful transition toward 
a fossil fuel-free future through SESs is pre-dominantly a 
socio-technical process. Nonetheless, lack of attention to 
the social and behavioral aspects of energy systems results 
in problems and barriers in developing them [74, 78, 156].

Socio-technical answers to these problems in Table 1, 
can play the role of effectors (E) in Fig.  2 for an ASES 
leading the system to act in real-time. These solutions 
revolve around human and social aspect of SESs, and are 
realized through bottom-up public participation. Hybrid 
computation with the integration of human and machine, 
helps decision-makers (top-down) or even the public 
(bottom-up) to participate in the process of shaping and 
modeling of M to make its dynamics faster than S. Active 
involvement of decision-makers and the general public 
means better coupling between M and S.

According to problems in Table  1, effectors must 
enhance social acceptance of SESs, build trust, attract 
public participation, make sense of justice, reduce risk 
and social uncertainties, and increase environmental 
awareness. In fact, effectors (E) should be intended to 
proactively change the wranglers’ behaviors via their par-
ticipation to enhance anticipatory capacity of the system.

As we mentioned earlier, M and S are distributed 
decentralized systems, so the effectors (E) will be distrib-
uted decentralized systems, too. Some of the effectors 
are technical and some socio-technical. As for technical 
effectors, a combination of factors such as ESTs, com-
plete integration between M and S, maximal translation 
of physical elements of the system (S) into data (M)— 
datafication — wrangler energy communities and net-
work acting as computer creates feed-forward signals 
which can be used as effectors to control ASESs. We will 
focus on some socio-technical effectors which are impor-
tant in the process of transition toward ASESs. Once an 
ASES is formed, some of these effectors can be consid-
ered as the social component of system’s anticipatory 
capacity. To find socio-technical effectors in the litera-
ture, we seek solutions that emphasize wranglers’ col-
laboration in all sections of the energy system, such as 
co-creation, co-production, communing, and bottom-up 
energy-(self ) production.

To achieve social acceptance, the first kind of effec-
tors are clear and transparent communication with the 

general public, imaging ‘bigger picture’ of SESs applica-
tion, presenting knowledge and awareness of the ‘future 
and long term vision’ regarding SGs and optimizing 
public appeal through both the individual and societal 
benefits of adopting SGs [54] leading to future-oriented 
actions. Also, in order to build trust and goodwill, collab-
orative processes in planning and energy policymaking 
consistent with theories on building ‘social capital’ and 
increasing social opportunities for meaningful delibera-
tion in decision-making [55] have been proposed.

Another kind of effectors highlight democratic pro-
cesses and public participation such as revitalizing “civic 
culture” through democracy relying on a step-change 
in participatory processes in the “energy community”. 
Energy community comes to existence through network 
communities of wrangler’s gathering around energy pro-
jects [74]. Another way to generate reliable effectors is 
via energy democracy which is an emergent social move-
ment, democratically restructuring energy regimes [75, 
157] and shaping “civic engagement” for a democratic 
transition to the SES [158]. It is defined as ensuring 
access to energy, production and consumption of it for 
all [159]. These kinds of voluntary social movements are 
distributed and decentralized participation of Wranglers 
empowering process for “civic engagement” and civic ini-
tiative thereby ensuring the anticipatory capacity of the 
energy system.

Next effector can be exploring ‘socio-technical imagi-
naries’ [12, 160–167] and dreams, utopias or dystopias” 
about SESs [71]; That means exploring hidden social 
dimensions of energy systems and cultural resources of 
shaping social responses [168, 169] which explain past 
developments and illuminate prospects for future global 
cooperation [169]. Exploring the notion of “fantasy” as 
well as psychological and cultural needs within energy 
futures, through the development of optimistic, perva-
sive, but sometimes irrational visions of technological 
progress and its prospects [162] are other SES effectors. 
Figure 5 summarizes ASES effectors.

These effectors as “collective social facts” [160] in the 
distributed wrangler communities increase distributed 
anticipatory capacity since they trigger and form com-
mon conceptions of the desired future. Socio-technical 
imaginaries are transformation in the “knowing and 
doing” [167] in future energy systems and are made real 
by the actions made to achieve collective visions, espe-
cially when considering the emergence of multiple visions 
of the desirable future [170]. Socio-technical imaginaries 
“connect creativity and innovation” to attain desirable 
futures which are “collectively held, institutionally stabi-
lized, and publicly performed” [171].

The other set of effectors can be “social innova-
tions” in the energy realm, with high potential to meet 
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complexity [78]. Social innovation is any novel and use-
ful solution to a social need or problem which enhances 
society’s capacity to act [172]. For example, “Commu-
nity energy” projects are described as social innovation. 
This social movement [68, 78] is “creative reconfigura-
tion of social relations” around energy-innovation in 
forms of actor relationships [173] which raises aware-
ness of sustainable energy issues, improves public 
receptivity to RE installations, increases engagement 
in behavior change initiatives and shifts role from con-
sumer to prosumer in SESs [68, 78]. Community energy 
projects emphasize wrangler’s participation in the com-
mon issue of energy [173].

‘Green nudges’ are another kind of social innovations, 
aimed at encouraging people to voluntarily contribute 
to a common source; they are ‘new social configurations’ 
to build social networks supportive of RE. They subtly 
change wrangler’s behavior and decision context and gen-
tly move them toward sustainable choices without chang-
ing monetary incentives [78, 79]. The nudge can also be 
embedded in simulation, since simulation becomes an 
integral part of processes of social change [154] as a plat-
form to experience possible futures of socio-technical 
systems. As an illustrative example, “Gamification” or 
“serious games” raise awareness and change behavior in 
SESs [80] and “simulation games” help public understand 
the socio-technical complexity of energy transition [81].

Also, using stories about ‘energy utopia’ to engage 
groups and individuals to imagine possible futures, espe-
cially for marginal people of society [61] is another kind 
of effector. Back-casting [161], back casting historical 
narrative and visioning [174] are co-creation of narratives 
which motivate communities [74] about public desired 
future of SESs; motivate society to make the transition 
toward sustainable energy systems.

To summarize, based on the extensive literature of this 
area, we classify two types of effectors for the ASES. The 

first type is common and collective images of the future 
of energy systems, technology-backed social imagina-
tions, stories and back casting historical narrative. The 
second type of effectors are social innovation in the form 
of social movements such as energy community, com-
munity energy, energy democracy that pursue new social 
networks. Green nudges are between these two catego-
ries and can act as a medium and trigger of change. Both 
types of effects emphasize the engagement and interac-
tion of wranglers, but the latter are more proactive in 
nature. The second type actually shapes a new configu-
ration of social relations and interaction between wran-
glers. Both types try to create a big picture of SESs and, 
all these attempts to understand, imagine, and benefit 
from the future can be seen as modes of anticipation, a 
constant feature of human behavior [175].

Anticipatory smart energy systems
According to Ostrom’s definition, renewable natural 
resources and MGs in SESs as man-made system are CPR 
[124],. Now, we have a question like Wolsink’s, but with 
difference response: “How would such a common good 
be managed properly? [55].

Our proposal for the management of this CPR is using 
ASESs based on spime tools, principles of society 5.0 
and high levels of integration between real and virtual, 
information and action and present and future. In this 
system, the network itself is the computer. A simple dia-
gram of an ASES is shown in Fig.  6. The management 
in this system is conceptually different and decentral-
ized; it is the management of a common pool of pro-
sumption via creating an emergent anticipatory capacity 
and triggering action via effectors. The nature of this 
management is based on wrangler networking, closer 
social distance, collaborative and collective decision-
making, and finally, high wrangler involvement in ASES 
management.

Fig. 5  Some socio-technical effectors of ASES
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Also, as this system follows a maximal dataification 
approach to create the predictive model of the system 
protection of privacy sensitive information, security 
attacks on assets, data, network and application, and 
big data security threats in IoT are of great importance 
because they can damage the trust of the users threaten 
the reliability and stability of the ASES. Therefore, pro-
tocols similar to General Data Protection Regulation 
(GDPR) of European Union [176] are a pre-requisite in 
transition toward ASES.

Large scale ASES are not available yet but projects 
are being conducted to study features of such systems 
using anthropological approaches. SECURE project 
[177], for instance, intends to study the high levels of 
integration between cyber- physical, and social worlds. 
According to SECURE, presumption is the first and the 
most obvious form of this integration. The project is a 
“Techno-Anthropological investigation of how develop-
ers and future users relate to social and ethical issues of 
data sharing, privacy and trust”. We do believe that the 
description and the conceptual model presented in this 

paper can be beneficial in thinking about the future of 
energy systems, its challenges and solutions as well as 
designing research project like SECURE to delve further 
into the specifications of ASES.

Conclusion
In this paper, we presented a reconfiguration of SESs 
and their problems and solutions using an anticipatory 
system lens through juxtaposition of Rosenian concepts 
of anticipatory system and SESs. Anticipatory system 
framework of energy is ambitiously intended to offer a 
common ground for a transdisciplinary, post-normal dis-
cussion with, bottom-up approach that should disentan-
gle the complexity of energy systems.

According to Rosen’s claim, the theory of the antici-
patory system can be the foundation of the anticipa-
tory paradigm as the future system paradigm including 
emerging energy systems; When the knowledge is the 
action, the future is experienced in the present, and in 
other words, the future is integrated into the extended 
present. Networked communities are connected and 

Fig. 6  Visual Sample of ASES: two-way arrows designate information flows
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the crowdsourcing process acts like a computer. The 
maximum degree of integration of machine and human 
happens and society 5.0 is formed.

The crowdsourcing and participation of wranglers 
and ESTs create the maximum anticipatory capacity 
for the system. Because of the networked communities, 
the anticipatory capacity will be distributed, and the 
anticipatory behavior will become the constant feature 
in wrangler’s behavior if and when three prerequisite 
conditions of the anticipatory system are materialized. 
In this paradigm, CPRs are common pool of prosum-
aging, and there will be no concern about the tragedy 
of common, because of crowdsourcing of the man-
agement of common resources. In this configuration, 
the ESTs and technical issues matter, but wranglers’ 
behavior is of great importance and will be the basis of 
the energy system resilience. This is a paradigm shift 
from a smart and information-based society 4.0 to a 
super smart and human-centered society 5.0, in which 
the maximum degree of integration of machines and 
humans occurs.
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